反物质飞船优势多多
美国新墨西哥州圣大菲正电子研究公司(Positronics
Research)杰拉尔德·史密斯博士说:“最为显著的优势是正电子动力飞船具有更高的安全性”。目前的火星参数任务(Mars Reference
Mission)要求核反应堆将飞船推进至火星。这种方式之所以值得期待,是因为核动力推进可以减少飞船到达火星的时间,这样一来,由于宇航员暴露于宇宙射线的时间减少,从而提高了安全性。此外,化学动力飞船要重得多,且发射成本也更为昂贵。核反应堆也需提供够执行三年探测任务的充足动力。但是,核反应堆性质复杂,所以在执行任务过程中更有可能发生一些潜在危险。作为领导先进概念研究所反物质飞船研究的科学家,史密斯博士
说:“正电子反应堆在能提供相同优势的前提下,运作起来也要相对简单。”
同时,核反应堆即使在燃料用尽后仍带有放射性。当飞船到达火星后,“火星意义任务”的计划是指引反应堆进入百万年都不会与地球相遇的一条轨道,那时,残留辐射将降低至安全水平。相反,据反物质飞船设计小组介绍,正电子反应堆在燃料用尽之后也不具有任何残留辐射,因而,即便是废弃的正电子反应堆意外落到地球,人们也不必担心存在安全隐患。
同样,正电子动力飞船的发射也更为安全。倘若携带核反应堆的火箭发生爆炸,它将向大气层中释放大量放射性粒子。史密斯博士说:“我们的正电子动力飞船即便爆炸,只会释放一道伽马射线光,但伽马射线会在瞬间消失,不会有任何放射性颗粒随风漂移。而那道光也会限制在相对小的区域内,飞船周围约一公里的范围会是危险区。一枚普通的大型化学火箭爆炸后会形成一个火球,其危险区域同样也是一公里左右。”
正电子动力飞船的另一个显著优点是速度。“火星意义任务”飞船到达火星将需要180天左右。正电子研究公司工程师科比·迈耶说:“诸如气核和烧蚀发动机等先进设计将令飞船在90天、甚至45天内将宇航员送上火星。”先进的烧蚀发动机通过热行(运转用热)实现上述目标,这种推进方式可增加发动机功效或“比冲量”(Isp),比冲量是指火箭发动机单位质量推进剂所产生的冲量:比冲量越高,飞船在耗尽燃料前行进的速度越快。像美宇航局航天飞机主发动机等最为先进的化学燃料火箭发动机,每磅燃料能产生一磅推动力,持续450秒。核反应堆或正电子反应堆的这一数据则会达到900秒。烧蚀发动机通过自身缓慢蒸发产生推力,其比冲量更高。